
GitWaterFlow: A Successful Branching Model and Tooling,
for Achieving Continuous Delivery with Multiple Version

Branches

Rayene Ben Rayana Sylvain Killian Nicolas Trangez Arnaud Calmettes

Scality, Release Engineering Dept.
11 rue Tronchet, Paris, France

firstname.lastname@scality.com

ABSTRACT

Collaborative software development presents organizations
with a near-constant flow of day-to-day challenges, and there
is no available off-the-shelf solution that covers all needs.
This paper provides insight into the hurdles that Scality’s
Engineering team faced in developing and extending a so-
phisticated storage solution, while coping with ever-growing
development teams, challenging — and regularly shifting —
business requirements, and non-trivial new feature develop-
ment.

The authors present a novel combination of a Git-based
Version Control and Branching model with a set of inno-
vative tools dubbed GitWaterFlow to cope with the issues
encountered, including the need to both support old product
versions and to provide time-critical delivery of bug fixes.

In the spirit of Continuous Delivery, Scality Release Engi-
neering aims to ensure high quality and stability, to present
short and predictable release cycles, and to minimize devel-
opment disruption. The team’s experience with the GitWa-
terFlow model suggests that the approach has been effective
in meeting these goals in the given setting, with room for un-
ceasing fine-tuning and improvement of processes and tools.

CCS Concepts

•Software and its engineering → Software configura-

tion management and version control systems; Soft-

ware evolution; Software version control; Agile soft-
ware development; Software testing and debugging;

Keywords

branching model; version control; continuous integration;
gatekeeper; workflow automation; concurrent release cycles

1. INTRODUCTION
Software development has been an inherently collabora-

tive effort since the advent of computing, with applications,

libraries, and whole products often developed by teams of
contributors spread across multiple locations (e.g., in the
Open Source sphere). With this come many challenges, re-
lated to establishing and maintaining the quality and sta-
bility of the delivered work, coordination of changes and
maintaining multiple versions delivered to customers.

Scality RING is a distributed system providing object and
cloud storage allowing one to store and access billions of ob-
jects or even PB-sized objects across standard x86 hardware
to meet the most demanding digital business, cloud and ap-
plication requirements.

At the start, the small-scale team of Scality engineers
working to develop the RING product employed CVS and
later Subversion in an ad-hoc fashion, and collaboration hap-
pened ‘on the spot’.

The engineering team pushed features and bug fixes into
a shared trunk branch. This branch was slated to become
the next ‘major’ release of the product, though overeager
integration of partially-delivered features often resulted in
the branch being in a non-shippable state.

Scality RING is at the basis of many business-critical in-
formation systems. Therefore, customers tend to minimize
the number of feature rich upgrades of their systems. This
has a major impact on the development process since it re-
quires continuous maintenance of multiple version branches.

The process to port bug fixes to relevant branches (‘back-
porting’), sometimes requiring changes to the patch itself
was fully manual. When the change rate of the codebase
reached a certain level, this turned out to be a bottleneck
in the development process. Furthermore, being a manual
process, there was a continuous risk these backports intro-
duced accidental bugs or regressions. Creation of backport
commits on various version branches also destroyed rela-
tionships between semantically equivalent changesets, which
could only be recovered through information kept in commit
messages or the ticketing system, again relying on humans
doing the right thing.

The developer workflow was, in practice, interrupt-driven:
one could be requested to assist in the backporting of a
change made weeks ago whilst already working on an en-
tirely unrelated feature. Also, as a consequence of a ‘nightly
build’ testing procedure, there could be significant delays
between introduction of a change and feedback on its cor-
rectness. Furthermore, due to the nature of ‘nightly builds’
which test the aggregate of multiple distinct changes in one
go, failure of these test runs could be caused by any (unre-
lated) change that landed within the same timeframe.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

RELENG’16, November 18, 2016, Seattle, WA, USA
ACM. 978-1-4503-4399-2/16/11...
http://dx.doi.org/10.1145/2993274.2993277

17



2. GOALS
To overcome the deficiencies and drawbacks of our for-

mer development process, we set to radically change our
approach, easing the workflow for developers as well as en-
suring correctness of meta-information. Our high-level goals
can be summarized as follows:

Full automation of all processes reducing room for er-
ror, and ensuring information retained in various sys-
tems is kept in sync by construction.

Keep version branches in shippable state increasing
trust in the ability to meet delivery dates within a
team, as well as within the company as a whole. As
an engineer, this implies one can at all times start to
develop a new feature on a ‘stable base’.

Simplified workflow with less interruptions improv-
ing understanding for all contributors, especially new
ones, reducing room for human mistakes. Reducing
the number of interactions a developer is to have with
the system reduces the number of expensive ‘context
switches’ during day-to-day development work.

Retain meta-information and ensure its correctness

by beeping links between semantically equivalent pat-
ches which allows to answer questions like “In which
versions is this patch contained?” with confidence.
Automation (see above) also ensures this meta-infor-
mation is in sync between multiple systems (including
VCS, code review, ticketing system, etc.,).

3. RELATED WORK

3.1 Branching Practices
Most version control management user manuals describe

basic branching functionality (e.g., [2]). In addition, multi-
ple branching and merging patterns are identified and thor-
oughly explained in [1] and [6]. Also, in [3] the authors con-
ducted a survey that served to provide a broad view of mod-
ern practices in collaborative development, whereas in [4] a
similar study is made at company level to identify branch-
ing practices and their impact on parallel development in an
Agile environment.

One popular branching pattern is to maintain one branch

per release. The main drawback of this method is the diffi-
culty in maintaining the succession of active branches with-
out proper tooling, as this involves a large degree of merg-
ing and manual conflict resolution. A noteworthy project
that takes this one branch per release route is the standard
Python distribution1.
A second pattern, one that allows for arbitrarily complex

multi-level validation processes, is to define one branch

per promotion or stage reflecting the validation process by
maintaining branches for Development, Testing and Release
with increasing quality levels.

Yet another pattern is to create one temporary branch

per task (feature, bugfix, improvement, etc.) and to merge
these branches into the common, permanent, development
branch once the task is completed. This method eases con-
current development and keeps the development branch in
a relatively good, shippable state at all times (provided the

1https://hg.python.org/cpython/branches

task branches are validated prior to being merged using gate-
keeping techniques).

Vincent Drissen combined the two latter patterns to de-
sign gitflow2, consisting mainly of using a permanent devel-
opment branch as the mainline branch of the “temporary
branch per task” pattern. The branch is then staged to a
release branch when a release is feature-complete and fully
validated revisions are merged into the master branch. This
workflow has grown quite popular in recent years, however it
assumes the software to be in a rolling release cycle and does
not allow for multiple release generations to be concurrently
alive at the same time.

3.2 Gatekeeping and Merging Tools
In traditional continuous integration, automated testing

occurs once the code is merged into the mainline branch.
This practice allows regressions and bugs to be merged as-
suming that it is usually easy to find and fix a breaking
changeset which is true for small and co-located teams, how-
ever as teams grow in size this generates a lot of useless
communication and frustration, especially when the team is
dispersed across different timezones.

Gatekeeping is the process of attempting to prevent re-
gressions from being merged by running tests on the software
before changes are merged (and thus keeping the mainline
branch working for all developers). A number of tools are
available with which a team can automate this process, and
thus prevent human errors, including: Gerrit, Bors, Homu,
and Zuul.

Initially forked from Rietveld3, Gerrit4 is a popular code
review tool for Git. It acts as a gatekeeper on a public git
repository by adding a review process that is triggered when
a developer pushes a new changeset to the repository. This
review process can be split into two steps, both of which
require a positive score prior to merging the change into the
mainline branch: typically automated verification and peer
reviewing.

An integration robot written for the Rust project, Bors5

automates the merging of pull requests against the master
branch of a GitHub project. It is written as an idempotent
stateless function that continuously polls for pull request
changes, walking them through different states (unreviewed,
approved, tested, closed).

Homu6 is a gatekeeper robot that implements the same
state machine as Bors. Unlike that tool, however, Homu
is stateful and trigger-based, maintaining a state in a local
database and using webhooks instead of regularly polling
pull requests, in order to limit the bandwidth and API calls
its work requires.

Zuul7 is OpenStack’s gatekeeping system. Its most note-
worthy feature is how it handles parallel testing of ordered
dependent changesets across projects and repositories. Zuul
uses an optimistic queue system: dependent changesets are
merged into a shared integration branch, thus if changesets
A, B, and C are submitted in rapid succession C will be
tested with the prior changes included, even though those
changes are currently being processed by the testing pipeline.

2http://nvie.com/posts/a-successful-git-branching-model/
3https://github.com/rietveld-codereview/rietveld
4https://www.gerritcodereview.com/
5https://github.com/graydon/bors
6http://homu.io
7http://docs.openstack.org/infra/zuul/

18



Such an approach is characterized as optimistic because it
relies on the assumption that changesets A and B will pass
all the tests to validate C (and as such, once the assumption
is verified all of the changes can be merged at once, hence a
dramatic increase of the rate at which changes are merged
onto the mainline branch).

4. GitWaterFlow
GitWaterFlow (GWF) is a combination of a branching

model and its associated tooling, featuring a transactional
view on multi-branch changesets supported by none of the
tools and models previously described. GWF tends to ban
“backporting” in favor of “(forward) porting”.

4.1 Porting is Better than Backporting
The term “porting” is employed to describe the act of

developing a changeset on an old — yet active — version
branch and subsequently merging it on newer ones. It is
considered better than “backporting” for multiple reasons
cited in [3], “Porting” also makes merge automation trivial.
In fact, changes that are merged in an old version branch,
whether fixes or improvements, must also land in newer ones,
otherwise there is a risk of regression. A bot can use this
assumption to prepare and then execute the merge on newer
branches, thus offloading the developer.

4.2 Development Branches
GWF comes with a versioning scheme that is inspired by

semver [5]. Basically, version numbers are in the form ma-
jor.minor.patch. patch is incremented only when backward-
compatible bug fixes are being added, minor is incremented
when backward-compatible features are added, and major
is incremented with major backward incompatible changes.

development/1.1

development/1.0

feature/foo

development/2.0

a.

development/1.1

development/1.0

feature/foo

development/2.0

w/1.0/feature/foo

w/1.1/feature/foo

w/2.0/feature/foo

b.
x

y

z

development/1.1

development/1.0

development/2.0

c.
x

y

z

Figure 1: Steps to merge a feature branch with Git-

WaterFlow

In GWF, every living minor version has a corresponding
development/major.minor branch, each of which must be in-
cluded in newer ones. In fig.1.a development/1.0 is included
into development/1.1, which in turn is included in develop-
ment 2.0. Consequently, a GWF-compliant repository has

a waterfall-like representation, hence the name “GitWater-
Flow”.

4.3 Feature Branches
As GWF is based on ‘porting’, feature branches do not

necessarily start from the latest development branch. In
fact, prior to start coding a developer must determine the
oldest development/* branch his code should land upon (re-
fer to fig.1.a). Once ready to merge, the developer creates a
pull request that targets the development branch from which
he started. A gating and merging bot will ensure that the
feature branch will be merged not only on the destination
but also on all the subsequent development branches.

4.4 Transactional Multi-Branch Changes
The fact that every pull request can concurrently target

more than one mainline branch can dramatically affect the
approach that developers take in addressing issues. For in-
stance, it is not uncommon that conflicts exist between the
feature branch targeting version n, and version n+1. In our
setup, this class of conflicts must be detected and fixed prior
to merging the pull request. The code that resolves such con-
flicts is considered part of the change, in fact, and must be
reviewed at the same time. Also, it is a requirement that a
pull request be merged only once it has passed the tests on
all targeted versions.

In short, the changes brought to the software on mul-
tiple branches is a single entity and should be developed,
reviewed, tested, and merged as such.

4.5 Bert-E
Bert-E is the gatekeeping and merging bot Scality devel-

oped in-house to automate GWF, its purpose being to help
developers merge their feature branches on multiple develop-
ment branches. The tool is written in Python and designed
to function as a stateless idempotent bot. It is triggered via
Bitbucket webhooks after each pull request change occur-
rence (creation, commit, peer approval, comment, etc.).

Bert-E helps the developer prepare his pull request for
merging. It interacts directly with the developer through
Bitbucket’s comment system via the pull request’s timeline,
pushing contextualized messages on the current status and
next expected actions. In Scality’s case, Bert-E asks the
developer to 1/ ensure the JIRA fixVersion field correctness
with regard to target branches, 2/ obtain a couple of peer
approvals, and 3/ approve his own pull request (refer to
fig.2.).

Bert-E usually replies in less than 50 seconds, thus creat-
ing a trial-and-error process with a fast feedback loop that
is ideal in onboarding newcomers to the ticketing process.

4.6 Integration Branches
In parallel with the previously described process, Bert-

E begins trying to merge on the subsequent development
branches by creating integration branches named w/major.-
minor/feature/foo, after both the originating feature branch
and the target development branch (refer to fig.1.b).

Every time Bert-E is triggered, it checks to ensure that the
w/* branches are ahead of both the feature branch and the
corresponding development branches (updating them follow-
ing the same process when this is not the case).

Every change on a w/* branch triggers a build/test session
on a Jenkins instance. When the pull request fulfills all the

19



developer Bitbucket Bert-E Jenkins JIRA

push / pull request

webhook

ticket OK

check ticket

create w/*

webhook

approvals

build succesful

webhook

merge

notify

ticket OK

check ticket

create w/*

check build

webhook

build OK

check approvals

approvals OK

Figure 2: Merging a feature branch with Bert-E -

Best case scenario

requirements previously described, and when the builds are
green on all the w/* branches, Bert-E fast-forwards all the
development branches to point to the corresponding w/*
branches in an atomic transaction, as depicted in fig.1.c.
Note that if another pull request is merged in the interim,
Bert-E will not be able to push and must re-update its w/*
branches and repeat the build/test process.

4.7 Managing Conflicts and Adapting Code to
Newer Versions

Bert-E may encounter conflicts in the creation of the in-
tegration branches, in which case it comments out the pull
request and gives the developer the Git commands required
to reproduce the conflict on his machine. The developer
then fixes the conflict on an integration branch, and pushes
it to trigger Bert-E again and proceed further in the merge
process.

4.8 Other Branches
In addition to the branches previously described, there are

also release/major.minor branches that point to the latest
release for every version branch and hotfix/* branches that
have the same purpose as in gitflow (usually starting from
release/* ).

Finally, Scality has added stabilization/major.minor.patch,
which we optionally create to protect the branch from receiv-
ing last-minute risky changesets. These are similar to devel-
opment/* branches, the difference being that they do not
automatically receive merges from the upstream cascade.

5. EXPERIENCE REPORT

5.1 Better ‘Definition of DONE’ and Smoo-
ther Developer Process

In use at Scality for nearly a year, we can testify that the
main GWF benefit is its atomic multi-branch merge prop-
erty. In this context, ‘DONE’ means merged and fully tested
on all target branches, and there is no additional backport-
ing phase wherein it is discovered that the backport is more

complex than the fix itself. Target branch conflicts are de-
tected early and are dealt with prior to merging.

Peer reviews/approvals aside, the development process is
smoother and allows the developer to push his changeset
to completion without depending on third parties to merge.
Changeset ownership reverts back to the author and does
not vary across time. Thus, the developer is responsible for
it up until the merge.

Also, the metadata in the git repository is much clearer,
and now a simple ‘git branch --contains <commit>’ will
indicate within which branch a change has been merged.

Due to gatekeeping, the development branches are always
in a shippable state, which has greatly improved Scality’s
accuracy in predicting delivery dates. Hand-in-hand with
that, the amount of overall engineering work in progress has
been reduced due to the GWF deployment, and as a direct
result Scality is shipping faster.

5.2 GWF and Long Running Test Suites
Although the switch to GWF has been positive on the

overall, some aspects still require refinement, with one ma-
jor issue being a consequence of Scality’s extensive test suite.
In GWF, when two builds start and finish at approximately
the same time, and both succeed, only the first one success-
fully merges. Regarding the second build, Bert-E detects
that the development branch(es) have been updated and will
subsequently update the w/* branch, which triggers a new
build cycle. As a consequence, the theoretical daily merge
capacity is 24h divided by the duration of the test suite.
To overcome this limitation, we have begun developing a
second version of GitWaterFlow that performs optimistic
merge queuing in a Zuul-like fashion (refer to 3.2) but with
the support of multiple development branches.

6. ACKNOWLEDGMENTS
The authors would like to thank Pierre-Louis Bonicoli and

Maxime Vaude for their valuable contributions to Bert-E’s
source code, and Kory Kessel for editing the paper.

7. REFERENCES

[1] B. Appleton, S. Berczuk, R. Cabrera, and R. Orenstein.
Streamed lines: Branching patterns for parallel software
development. In Proceedings of PloP, volume 98, 1998.

[2] S. Chacon. Pro Git. Apress, 2014.

[3] S. Phillips, J. Sillito, and R. Walker. Branching and
merging: an investigation into current version control
practices. In Proceedings of the 4th International
Workshop on Cooperative and Human Aspects of
Software Engineering, pages 9–15. ACM, 2011.

[4] R. Premraj, A. Tang, N. Linssen, H. Geraats, and
H. van Vliet. To branch or not to branch? In
Proceedings of the 2011 International Conference on
Software and Systems Process, pages 81–90. ACM,
2011.

[5] Semantic versioning 2.0.0.
http://web.archive.org/web/20160630232710/http:
//semver.org/. Accessed: 2016-06-30.

[6] C. Walrad and D. Strom. The importance of branching
models in scm. Computer, 35(9):31–38, 2002.

20


